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Abstract
The paper analyzes the spaces BE(Q) and the associated
trace spaces on the boundary 8Q. These spaces are essential in
the theory of the h-p version of the finite element method. The
h-p version for the problem with nonhomogeneous essential and
- natural boundary conditions is analyzed. Numerical experimenta-

tion is presented.
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1. Introduction

There are three versions of the finite element method: the

h-version, the p-version and the h-p version. The h-version is

the standard one, Qhere the degree p of the elements is fixed,
usually on low levels, typically p = 1,2 and the accuracy is
achieved by properly refining the mesh. The p-version, in con-
trast fixes the mesh and achieves the accuracy by increasing the
degree p of the elements uniformly or selectively. The h-p
version is a combination of both.

The standard h-version has been thoroughly investigated theo-
retically and computationally. The literature here is overwhelm-
ing. To date there are over two hundred monographs and couference
proceedings (18] and new monographs and proceedings are continuous-

ly appearing. There are many programs of research and commercial

type available (e.g. see [18]).

The p and h-p version is a new development and it is very
successfully used for solving elliptic equations, especially in
the field of computational mechanics. The first theoretical
results were published in 1981 (see {2],(10]). There is only one

commercial code based on the p and h-p version of the finite

element, the program PROBE of NOETIC Technologies (St. Louis, MO).

PROBE deals with two-dimensional elasticity, stationary heat

problems and thermoelasticity problems. The code for the three-
dimensional problems will be released in 1988. PROBE presently is
utilizing 1 < p s 8. There is also commercial code FIESTA for
solving three-dimensional elasticity problems using 1 < p : 4. A

research code STRIPE developed by Aeronautical Research Institute
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of Sweden has the p and h-p version features for three-
dimensional problems and is using 2 < p < 12.

For the survey of the today's state of the art and recent
progress we refer to ([(1],[2].(8],(14]),[19] where also additional
references can be found.

The success of the h-p version is, among others, based on
the fact that the elliptic problems of the structural mechanics
are usually characterized by piecewise analytic data (boundary,
coefficients, boundary conditions). This implies then that the
exact solution is analytic (or piecewise analytic) with singular
behavior of precise character in the a-priori known areas as for
example in the neighborhood of the corners of the domain. We have
shown in (4],[5] that this class of solutions can be very accu-
rately described in the frame of countably normed spaces. We have
denoted this space by 3;(9). If the solution belongs to the this
class then we have shown in [6],[13] that the finite element solu-
tion converges exponentially.

The present paper elaborates on the characterization of trace
spaces of the function u € 82(0) and gives precisely verifiable
necessary and sufficient conditions for the input data (Dirichlet
and Neumann, conditions, right hand side) which guarantee that the
solution belongs to 83(0). In the previous paper we did address
the h-p version for the problems where the essential (Dirichlet)
boundary conditions could be satisfied exactly by the finite ele-
ment solution. 1In the present paper we design and analyze the way
how to deal with nonhomogeneous essential boundary conditions in

the full generality. We show that the performance of the method

-
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is the same for general essential conditions as for the natural
ones. In section 2 we give the preliminaries and basic defini-
tions. Section 3 defines the model problem of second order ellip-
tic partial differential equations. Section 4 introduces the
spaces of traces of u € 82(0) on I'. It shows also that the
function in the trace spaces can be extended into ?2(9). This
section gives some of the major results of the paper. Section 5§
defines the finite element method, its h-p version, characterizes
the meshes and elements under consideration and defines how to deal
with nonhomogeneous boundary conditions. Section 6 is analyzing
the convergence of the method and proves that the rate of conver-
gence is exponential. Finally, Section 7 brings numerical exam-
ples which show that the theoretical results having an asymptotic

character are applicable in the wide range of practical accuracy.
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2. Preliminaries

Let Q ¢ Rz, (xl,xz) = X be a simply connected, bounded

M

domain with the boundary 8Q =T = |} ;. Iy are analytic simple
i=1

arcs called edges,

Ty € (ey(8),p (8))lg € T = [~1,1])

where ¢i(E),vi(£) are analytic functions on I and I¢3(E)|2 +

lwi(t)lz 2 a, > 0. By Fi we denote the open arc, i.e., the image

of I = (-1,1). Let Ai' i=1,...,M be the vertices of Q and
l‘i = A1A1+1, i.e., the edge Fi is linking the vertices Ai and
A1+1. For simplicity we will also write A1 = AM+1' An example

of the domain Q nunder consideration is given in Figure 2.1.

Figure 2.1. The scheme of the domain.

By @y 1i=1,...,M we denote the internal angles of © at A

i
We shall assume that 0 < @y s 2n., We will also consider the case
when two edges coincide. Then we understand them in a "two sided"

sense. If all edges are straight lines then we will call the

7 {rf;?' .4 A &
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domain Q a straight polygon. Otherwise we will speak about a

curvilinear polygon. If 0 < w5 < 2n, i =1,...,M, we will speak
r = r(0) N rfl)

about a Lipschitzian domain. Let us assume that

where T(0) = y fi' r1) - F-F(O), Fl1) 2 U Fi’ where Q is
ieQ ieQ’
some subset of the set (1,2,...,M}) = A and Q = MA-Q,

We have assumed for simplicity that Q@ is a simply connected
domain. The results we are presenting here are also valid when Q
is n-connected, bounded domain and its boundary is composed by
n-curves.

Denote I = {x]|-1 < x < 1}, we also will write I = ({x |

, X

172

-1 < X, <1, X, = 0} < ?2 when no misunderstanding could occur.
By LZ(Q)' Lp(Q), L2(I), Lp(I) the usual spaces of p-
integrable, 1 < p < ®, functions on Q@ or I are denoted. By
Hm(Q), Hm(I), m 2 0 an integer we denote the usual Sobolev space
of functions with square integrable derivatives of order < m on

Q (respectively 1I). The space Hm(Q) is furnished with the

usual norm

a2 = Z i p%uj 2
H®(Q) L, (@)
OsjJajsm
where a = (al,az), a, 0O integer, i = 1,2, |al = a,+a, and
Dau = -an—u = u
a '] P S PO
ax1‘8x2' xl‘xz’
Further we let
hal = | 1D™al .
Hm(Q) Lz(Q)
D™ 2 = Z ID% 2.
la|=m
5
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As usual we shall write HO(Q) = L2(Q),

Hé(Q) = (ue H'(@)ju =0 on r{O)y,

m K (k) _ dXu

In the analogous way we define H (I) with Du =u = —%
dax
By rj(x) = dist(x,Aj) = !x-Ajl, Xe€eQ, j€ A we shall

denote the Euclidean distance between the point x and the vertex

Aj' rl(x) = |x+1], r2(x) =|x-q, xXe I. Let 3 = (8 . .B (res-

17 M)
pectively 3 = (81.32)) be an M-tuple of real numbers 0 < Bi <

1, 1 =1,...,M. We will write a, <8 <a (respectively 3 < 3)

2
if a1 < Bi < a, (respectively /3i < Bi), i=1,...,M. For any
k integer we shall write g8+k = (ﬁ1+k,....BM+k) and
M
_ B3 +k
QB"’k(x) = n Iri(x)l : ¢+ X € Q
i=1
and
P = e 15 e T
ge'¥) = N Iry(x o X< 1
i=1
By cl), ¢I@), ¢diny, (1), j » 0 integer we will denote the

set of all functions with continuous j-derivatives on ¢, Q, I,

I, furnished with the usual norm il o et . Let

Il
cdia) ¢
£
H;' (Q), m 2 € 2 0 integers be the completion of the set of all

infinitely differentiable functions under the norm

k=m

2 - 2 la] 2 N
”u"Hm'C(Q) = ”u"HC-l(Q) + z ”’m-k-e'n u'”Lz(o) for € : 1,
B la|=£

k=¢£

k=m

T D N LT

la|=k
k=0
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0,0

If m=£€ =0 we shall write HB

= LB(Q)' Analogously as

before we define

2 :z: a 2
ful = ¢, 1D ulll .
€,€ 4 B L,(Q)

Hy la| =€

In the similar way Hg'e(l) is defined

k=m
2 2 - B 2
hall = llull + :E:HQ D ulll for ¢ : 1,
m,< R 2 | B+k-2£ "LA(TI)
Hy' " (1) H (I 2
k=m
2 - a 2
| = Il I .
3 k=0

Further we introduce the space 32(0), € > 0 integer which will

play an important role in this paper:

. ¢
55(0) = (ulue Hg' (@), any k > £, | _otDMul

’B+k ‘LZ(Q)

s ca¥%(k-€)1, lal =k, C>0, d: 1

independent of k).

If we wish to underline the dependence on d we will write

Y4
BB d(Q). Analogously for <€ : 0 integer

(k)

e B K, N
B3(I) = {ulue Hy' (I), any k : ¢, (R PR hLz(I)

-£
< Cdk (k-€)!, ¢ > 0, d > 1 independent of k}.

Further for j =1,2,

k

edi0) = (ue u'd@) 10 (x) ¢ ca¥irie 1

k+s-j+1 (X

fja] =k = j-1,j,...,€ > 0, d = 1 independent

-

*d
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1.k

J = J.3 (k) . -
GB(I) = {u € HB (I)11u | < C'§k+3—j+1/2(x)' d k!
k> j-1,...,C > 0, d = 1 independent of k}.
= . k-1/2 .
Let p € y) Fi. Then we define H (7) (respectively
iepcA
- £-
Hg 1/2, 1/2(}'), k 2 €), k2 € > 1 integers as follows: for any
¢ € Hk-l/z(r) (respectively H§—1/2,£—1/2(7)) there exists f =
Hk(Q). (respectively H (Q)) such that fi7 = ¢. We define
then
loll (respectively ol )
- s - -
HE"1/2(r) uST1/2:821/2
= inf | £} Kk (respectively i fl k. & ).
f|7=¢p H(Q) H ' (Q)
£-1/2 .
By BB (r), € 2 1, we will denote the set of the traces on ,

of functions from the space 32(9).

Let Fi be an edge of Q, then by the assumption there

exists a one to one mapping m, of I onto Fi which is analy-

tic. 1If Fo is a straight line then we shall assume that m, is

the linear mapping. Let u be defined on Fi, U(x) = u(mi(x))
be defined on I. Then we define
HU(C,) = (ulU e H'(I))
hall m = | Ui n
H (Fi) H(I)
In the same way we define the spaces H?'C(Fi), (F ), f(ri).
Let us remark that, as we defined it, ! m depends on the
H (T )
i

mapping m,, i.e., it depends on the parameterization of the arc

£
Fi. Nevertheless the space Hg' (Fi) does not as well as ﬁs(ri)

(see Lemma 4.6) but 3;(Fi) could be dependent on m . Let us

8
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state now some lemmas which will be used later.

Lemma 2.1. We have

2 % (@) < c%(@)

»

with the continuous injection. o :

See Lemma 7 of ([3]. ;

2,2 :

Lemma 2.2. Let u € Hg (Q). Then N

(1) :

(2.1) LR L T N LU :

2 HB (Q) ;

’

: ]
; (ii1) Let u(Ai) =0, i=1,...,M. Then b
| &
(2.2) lud, | s Cllul . .
| B-2"L,(Q) #2:2(q) 3
B Y.

See Lemma 8 of [2]. 0 0

“

Lemma 2.3. %2(Q) c €2(Q) and 62(Q) c 82 (Q), 0 < 8+4c < 1, ¢ > 7

_ B B B B+& ’ ' y

0 arbitrary. - <

See Theorem 2.2 and 2.3 of [6].

Lemma 2.4. Let u € 33(0), jJ 2 0, then u is analytic on Q -

]
NG

U
A,. 3
1=1 1

Lemma 2.5. Let r» 1 and F(x), 0 < X < ® is defined by

’.x

F(x) = | g(t)at for r > 1
Jo
@

F(x) = J f(t)dt for r < 1.
X

Then

P PARACNNR | §rr-rr syl IR R SLEE %

PPN

............................

R0 POV
'z".'-,‘.‘-‘.'o.,’.,,‘o.. L



See Theorem 330 of [16].
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3. The model problem and its properties

Let Q@ be the curvilinear or straight polygon and L be a

strongly elliptic operator

2 2
L{u) = -iz- (ai,j(x)uxi)xj + Zbi(x)uxi + c(x)u
, j=1 i=1
where ai j(x) = aj i(x), bi(x), c(x) are analytic functions on

Q@ and for any 51'52 € R and any x € Q let

2
2 .2
D ay, grity o mgleleed)
i,3=1

with “0 > 0.

Let B(u,v) be continuous bilinear form on Hé(Q)vHé(Q)

2

B(u,v) = [ [ Z a, jux Ve * z biux v + cuv]dx.
ali)j=1 173 10 i
We assume that
inf sup IB{u,v)| 2 ”1 >0
ffalf 1 =1 vl 1 =1
H(Q) H™(Q)
1 1
ueHo(Q) veHO(Q)
and for any v € Hé(o), vx O
sup IB(u,v)| > 0.
Ihali 1 =
H™(0)
cul [e]
u= O(..)

0

Assume now that g (F(e)), £ =20,1, £ € 3R(Q) and con-

(€] _ g3/2-¢
R
sider the boundary value problem

(3.1a) Lu=f on ¢Q

11
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(3.1b) u = g[0] on r‘o’
(3.1c) g%z = g[1] on r(l)

where we denoted by n. the conormal in the usual sense. The

solution of our problem is understcod in the usual sense. Then we

have

There exists unique solution u0 & HI(Q) of the

See Lemma 3.1 of [4]. -

Theorem 3.1.

problem (3.1).

Let us mention some theorems addressing regularity of the

solution uo.

There exists 0 = Ei <1, i=1,

wi, etc.), such that if £ =

Theorem 3.2. .M depending in

the problem (i.e., operator L,
30(0), glfl e 83/2°5r )y £ 20,1, 7 <3 <1 then ug = 82(0)).
Proof is given in [3].

Theorem 3.3. Let Q be a (curvilinear) polygon (instead of

straight polygon as in Theorem 3.2) and let then assumptions of
Theorem 3.2. hold. Then u, < cg(o).

Proof of the theorem is given in [(6].

We have seen in [6], [13] (see also sections 5 and 6) that
when the solution u of the problem 3.1 belongs to the class
BB(Q) then the h-p version of the finite element method con-
verges exponentially.,

Theorems 3.1 and 3.2 show that it is important to develop

33/2-5
3

can be easily used in concrete cases to verify whether the input

g[’3]

practical characterizations of spaces (ry, ¢ = 0,1, which

data, i.e., belong to the desired space. We will elaborate

on it in the next section.

12
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4. Traces and extensions of weighted Sobolev spaces. Characteri-

zation of the spaces 33/2'((r)

In this section we will elaborate on the characterization of

the space Bg/z-e(r)' € = 0,1 which leads to an easy verification

in the concrete cases of applications.

Lemma 4.1, Let 13 = (31,62), 0 <3 <1/2 and g € H;'l(l). Then
(1) gec®I) ana gl , _ < cigl -
C(I) H,'"(I)
3
(11) 1g(x)-g(-1)]| = Cé, pp(X)igl 1.1
Hy' 7 (1)
lg(x)-g(1)] = CE, a3 (x)igil 1.1
Hy' " (1)

where C is a constant independent of g(x) (but depends on 13).

Proof. Obviously
X
IJ g'(r)dr|
t

IA

lg(x)-g(t)|

x X
“ 9’2(7)5§(T)d7] I/ZU (;,3(r ) )—Zdr} e

t J t

X . _p 172
gl 4 l (#5(7)) “ar
Hg' H(1)

which shows that g is continuous on I. Using the imbedding

(4.1)

A

A

t

theorem on (-1/2,1/2) = 1I' we have

(4.2) Ig(o)i < cCligl 1 s Cilgl 1,1

HY (1) Hy' (1)

and we get immediately

tall < dell
9" 0 < Cigh 1

C(I) HB (I)

P &
AL

AL

o



Further (4.1) immediately leads to (ii). o
Lemma 4.2. Let 3 = (31,32), 1/2 <8 <1 and g € H§’2(I). Then
(1) gec®(1) and gl , < cClgl , ,
C(I) H, '“(I)
B
(11) lg(x)-g(-1)]| = Céy p g ix)igl 2,2
HB (1)
lg(x)-g(1)| < C&_,. . (x)!gi

where C is a constant independent of g(x).

Proof. Using (4.1) we get

"
n\
)
(o N
<

lg(x)-g(t)!

A
r 1
=
)
'0'
.-a
N
Q
L____J
[y
~
N
| pamas— ]
—_—
t ES
[
HI\)
Q
—
-
Q
~
—
—
~
N

[}
Q
‘
)-n
R
ﬁ
-
| pes——— ]
t———y
LI
<
o)
~
| U )
-
~
N

and
ng'#7 ) s I(g'-g'(0))# 2 &
1-3 L (1) - * I-B”Lz(I)

+ IQ(O)IHQ1 BIL (1)

s C[lg’'(0)] + llg”* l

]
B'L,(I)

< Clgli .

In the last inequality we used Lemma 2.5 and the fact that 1/2 <

8 < 1. The lemma now follows immediately. A
Lemma 4.3. Let g € 3 d(I), O <3 <1. Then for k 2> 1
14
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1 k

g® x)1 s c(e (x)) 7 (d)) Mk

k-1/2+3

where > 1 is independent of g,k,d, and C depends on <,

but is independent of g,k.

Proof. Let I' = (-1/2,1/2). Then for any k 2 1 we have

p g | < c((1/2)) ¥ Pr1ak
b HY(T)
where 3 = max(31,82). Hence by the imbedding theorem
[
$,
7 1g® oy1 < ca¥k:
. 1
*
where d1 2 yda, y > §—1(1/2) > 1, PFurther, for k =2 1
; X
' k k k+1
; g™ s 1g™® o1« |J g ¥ (t)ar]
?l o
' - X
\ 1/2
' (k) (k+1) 2:2 ‘
N < Ig (o)l + J (g (t)) ?+k(t)dt]
:: ' 0 4
' * 11/2
\ [ ¥l lt)dt
) 0 .
) < cd k [1+<I>q+k 1/2%)]
" Ky, (e -1 ,
‘ s CUdy )R () )y a(x)) 70 :
g Corollary 4.4. Let g=< B3,(I), 0 <3 < 1. Then g = ¢, (I).
E Corollary 4.5. Let g = 35(1), 0 <3 <1, Then for k : 2
,:
X (k) : -1 k
: bg ()| = ClE, 5 5, (%)) "dik!
;
: 2
I and g € GB(I)'
) 15
;
B N R e S e e L Lo o N N e L Y

»
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Lemma 4.6. Let ¥ = m(x) be a one to one map of I onto I,
m(x) be analytic on I and Im'(x)] > 0, x € I. Assume that
g e cg(l), j =1,2, and define v(x) = g(m(x)). Then v « @3(1)'

j=1,2.

Proof. Because m(x) is analytic on I it can be extended into

the complex plane € on I = (z = x+iy|-1-6 < X < 145,|y| <5},
- - X

5 > 0, m(z) is a one to one mapping of 16 onto 16 > 16” 6 >

0 and Im'(z)l >ay >0, z¢ i&' Let now j =1 and x, < I.

Then for k 2 1

1Ky

195 ()1 < 8y pua(x0) T K

and the series

s V]
g'(x) = Zg(kﬂ)(xo) (x—xo)k-‘lz!
k=0

is absolutely convergent for Ix—xol $aA—a—, a < 1. Hence also

[s +]
’ = (k+1) _e 1 k1
g(z) :E:g (xg) (Z-%4) " !
k=0

-1 ;(x )

converges and |g'(z2)]| ¢« C’B+1/2(xo) for Iz—xol C A —F— where
1

C 1is independent of Xq- Hence g{(z) 1is a holomorphic function

and v(z) = g(m(z)) 4s holomorphic, too. Using Cauchy theorem we
get immediately that for Lk > 1

k’-l

(k) .
vt s Cdg¥y /248

(x)k!.
Obviously v(x) € H;'I(I). In quite a similar way we prove the
2

statement for j =

16

s Ll e \‘.~.’_.-_:.'_:.»_ -

BN S
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Remark 4.1. Lemma 4.6 shows that the space Gg(I) is invariant b
with respect to an analytic mapping. Using the formula of the 2
n"h derivative of a composite function (see formula 0.430 of
[15]) we can also show that Bg(I) is invariant space with ]
respect to an analytic mapping m(x) as in Lemma 4.6.

Let I be an analytic arc. Then we could define the spaces

cj(r) and Bg(r) with respect to the length instead as we did in

[ RN R

section 2 using a specific mapping. These two definitions are
then equivalent by lemma 4.6. and Remark 4.1.

Lemma 4.7. Let M(x), x < Fz, M(x) = (Ml(x),Mz(x)) is a one to

1I < u on Q, where J is

one mapping of QO onto @ and |{J

the Jacobian of the mapping. Assume that M(x) can be analyti-

cally extended on 95 = (x € Pz!dist(x,Q) < 5} so that it is one

AL, Ty

* -

- -
to one mapping of 06 onto Q@ , Q > Q. Let u € Gg(Q), j=1,2,
v(M{(x)) = u(x). Then v e« Cg(ﬁ). The proof is quite analogous
as of the Lemma 4.6 only we have to apply the theory of two com-

plex variables.

Lemma 4.6. Let g €« Gg(l), 0 <1 <1, j=1,2. Then

gec (1), 0 <7 <1,
3

3 = R+¢, £ > 0 arbitrary.

Proof. Let us consider only the case j = 1. The case j = 2 is

analogous. Because for k > 1

(k) . cakei s -1
lg (x)|] < Cd k'(’k+d-1/2(x))
we get
17
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(k) 2;2
J (g 7 (x)) 78, o, (x)dx
-1

1

< Cde(k!)ZJ §2 (x)dx

_y B-B-1/2

< C(C)de(k!)z. o

We see that Lemma 2.3 has a completely analogous version for the

relation between 32(1) and G;(I).

Theorem 4.1. Let u € H§+2'2(Q), k 2 0 and ri be a straight

line edge of Q@ and u|r = g;. Then
(i) For 1/2 < Bi'Bi+1 <1 and k 2 0O

-~ - -

k+1,1
B ’ ’
i
Bi,j > 0, Bi,j € (Bi+J_1-1/2,1), j=1,2
and
k
ng,! < Ccdiual
i **1'1(r1) Hg*z'z(o)

]
i

with C independent of k and 4 : 1.

(11) Por 0 < Gi'Bi+1 < 1/2, k 2 1
1
€ H' (T ),
91 ( 1)
g, « '3y, 8, g€ (Byyg*1/2.1), 3 = 1.2
@i
I} ' ' !
”qu 1 < CJqJ 2,2
H (ri) HB (Q)




’ SXe N ¢ Cdiu
| i H¥+1‘2(r.) Hk+2'2(Q)
| 3 i 3
i :
1Y
< 2 . h .
P , ; o "
(iii) If u = BJ(O) and 1/2 < 3i'gi+1 < 1, then 95 ;
9 1 - s ‘ [
B}(Fi), 31,3 < (3i+j_1—1/2,1/2), j=1,2. If O < gi'{i+1 < 1/2
4
g2 5 e (.
then g; € ?& (Ti). 3i,j < (Ji+j_1+1/2,1).
i
Proof. Without any loss of generality we can assume that | = fl
and
Fl = (xl,lex1 € I, X, = 0}, A1 = (-1,0), A2 = (1,0), ¢ = (<1,f2).
aku
Let k=20 and v, = — ¢ . Then for Lk =z 2
k Lok Tk+3
ax
1
k
. .2 T ‘
AT < C["(D LIPS
k H2(Q) axf k+3 LZ(Q)
k
1 37u
+ k(DT —)%, . .
axk k+3-1 L2(O)
1
k
2 ,87u
+ Kk (3 ) ¥k+s-2'1, (0)]
cxl 2
2
< Ck™rui .
Using Lemma 2.2 we get for k =1
(v, | + Ciu.
1 y20) 1Y 2 (0)
Because of Lemma 2.1 u - CO(G) and hence v (A;) =0, i =1,2.

Hence using Lemma 2.2 we get




[v.li < Cllual .
° n2(0) 822 (0)
B
and hence for all Kk 2 0
2
(4.3) v, 1 < C(k+1)“lul
k HZ(Q) H:+2'2(Q)

where C is independent of k. Therefore by the imbedding theorem

v, < c%@), k= 1.

Let us show now that Vk(Ai) =0, i =1,2, k2 1. Assume on the

contrary that vi(Al) > 0. Then because vk € CO(§) we have

vi(x) >e >0 for |Ix-A ] <&, 86 > 0,

1

Hence for k 2 2

where

Qé =Q n {x|l|x-A < &)

1l
and we have the desired contradiction. For k = 1 we use Lemma

2.2 and get

Q.
b
v
™~
N
S e ey
L J
o7
~
L}
8

If u e B;(Q) then we get from (4.3) for k > O

k
fwr, 1t < Cd k!.
k H2(Q) 1

20

oa » B

‘‘‘‘‘
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A |

)

0 (k) a¥u (k)
:h We have g (x.) = | k 2 0. Then g (%
‘,t' 1 r 1
W' a 1 l

) =

-1 _ 1
"y §k+3(x)vk(x)|rl = k+,3(}( )vk(x ) where we wrote k+3( y and

'ﬁ‘ Vk(xl) instead of k+8(x ,0) and vk(xl,O). Assume first that

‘ -

f EAPN: , < 1. Let d, = { min dist (A.,T )}M 2 fThen we have
3 < %1032 o iy it

v b

-1 .
§ = < = o ..
X for X Fl, @(xl) < é(xl)do and hence for j 1,2, S k+1

P 1

) .2 22 2,-2
“ z CJ {J § [ I é s
bl » j-1+3 j 1 3+j-1

1 )
2 ¢ cas23;2 . 202
p + @, plv. J171dx ) s cdg {[ [Ivj_ll 't;
-1 1
1282 . jax)).

-1+31 3

A
+
<

[ &)
i
[y

<
< -

Using Lemma 2.5 the fact that j = 1,...,k+1, v, ,(A.,) =0, i =

-

1,2 and that 5—81+1 > 1/2 we get for some d, <1

1

J 52 _Ig(j)(x X dx ¢ cd] 23 J v, . 1%2  ax

By (4.3) and the imbedding theorem we have for 1 < p < ©» and
J = 1"-01k+1

L
pf v’ i s C(p)iv : . Cjzhu
< j-1 Lp(I) j-1'52(0) H‘3+1,2(Q)
T
¥
) Hence for j = 1,...,k+1, because Rl-ﬁ > -1/2 we get
1
3
z#
21
ﬁ

NS Ly
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J
.
1 r1 '
- . _ N
|2 199 (%) 1%2ax < cal?®(| (82 HPax)M/Piy, 2 .
J 143 1 1 2 -3 j-1 qu(I) g
-1 37T -1 "1
< CdIZkE:V. 1:‘22 < Cd22k'u 2k+2 2
=1 w4(0) Hy ©' 2 (@) )
Because by Lemma 2.1
RV < Ciu
c®(a) H2'2(0)
we get
4 g < Cius .
Lp(My) 2 2 (0) N
Hence we have proven (i) and (iii) for 1/2 < xi'2i+1 < 1 and N
k 2 0. Assume now that 0 < 81,32 < 1/2. We will proceed analo- >
gously as before. For j z 2 we have :
-2 . :
J #2191 (x)) 1 %ax, 1
r j-—2+/31 :
1 .
1 :
2 ;2 . 2, -2 2 2 .
< CJ [ ? AT VTR P L SPPRRE LS
j-2+8
_1 1 h
1 S
< cd ZJJ 32 . v l(xl))zdxl
—1+483, 73- .
1 Jq
when we once used Lemma 2.5 and the fact that —1+R1—§ > ~1/2.
Hence using (4.3) and realizing that -1+61—5 > -1/2 we get analo- P
gously as before for j = 2,...,k+1 N
§2 - Ig(j)(x )lzdx < Cdzki?u'2
—24h 1 1 2 k+2,2 o)
r, 374% 2 .
1 v
)
(J
Let us prove now that g
22

..... \\\\'sk_‘.'-.. ‘--\
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g! < Clua , k21
1 k+2,2
HO(T ;) Hy (Q)
We have v,.(A,) = vo(Az) = 0 and hence
1 1 i
gdx ¢ cal?| e %1vi1? + 1vo1%7? jax < €aZ?| 72 v %ax
0 s 0 o' s 0 5 0
-1 1 3 3+1 -1 3

where we have once more used Lemma 2.5. Because O < i < 1/2 and

v’ﬁ. < C(p)l‘v ' < e
o} Lp(I) C H2(Q) H2'2

we proceed as before and (ii) and (iii) follow easily.

Remark 4.2. It was essential in the proof of Theorem 4.1 that
Bi,j = (Bi+j_1—1/2,1) respectively, Bi,j € (Bi+j_1+1/2,1),

i.e., of the open interval. The proof does not hold for the

closed interval. It was assumed in Lemma 4.9 that the edge FO
of the domain was straight. Let us assume now that Fi = m(I)
where m = (¢,1) are analytic functions on I as given in

section 2. Then we have

Lemma 4.9. Let the edge Fi of the domain be analytic. Then the

part (iii) of Theorem 4.1 holds.
Proof. By Lemma 2.4, u < 65(0). Let M(£) = (o(t),u(r)), ¢ - I
be the mapping of I onto TI',. Then we define

1

M (1) = e(E)=nw(F), M (£,0) = w(E)4me’(c).

Then the mapping M(#¢,n) = (Ml(t,n),Mz(z,n)) is analytic on

I, = (£,n1-1-5 < F < 145, |n| <5), 8 >0, 13| <a, (I <ua on
I6 (where J 1is the Jacobian of the mapping) and maps Ih onto
* * *
the (open) neighborhood S of ri. Denoting @ =60 . S ,
23
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T =M l(Q ), we see that v{x) = u(M 1(x)) is defined on T,

and v € G?(T) by using Lemma 4.7. Hence v € B§+f(T), £ >0

arbitrary, by Lemma 2.3. Hence for 1/2 < Gi'8i+1 <1 we get by

(iii) of Theorem 4.1

g, (£) = v(£,0) € B2 (1), B8, . (B +e-1/2,1/2), § = 1,2.

3. 1 i, ] i+j-1
i
Because ¢ > 0 arbitrary Bi,j € (8i+j_1—1/2,1/2). Analogously
. 2 >
' £E) € B. 3., . P ,1). =
for 0 < gi'Bi+1 < 172, gi(,) BB (1), 31,3 S (81+J_1 1/2,1)
i

Lemma 4.10. Let g1 € 8}(1), 0 < 81 < 1/2, 0 < 32 <1,
3

g, < $2(1), 1/2 < 3, <1, 0<3, <1, Let S=(r6l0<6 < 2n,
3

0 <r <1} where (r,9) are polar coordinates with respect to

(-1,0) and ¢(r) = r. Define
Ui(r,G) = gi(—1+r)
Vi(r,0) = 6[g,(-1+r)-g,(-1)]

(by Lemma 3.1, 3.2, g

m

i Co(f), i = 1,2, and hence g;(-1) is

well defined). Then

= 2 1 _I‘.
Ul,V1 € 33(3)' 3 = 31+1/2

2 - i -
Uy, Vy, € B(S), 8 = 3 -1/2.

Proof. Assume first that O < Rl < 1/2 and g, < ﬁ}(I). Set
3

3 = 81+1/2 and 01 = gl(-1+r). Then fer k > 2

K
a¥y
J ( kl)z(rk'z*‘)zrdrde
a

r

]
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4. 8" A 2 8% S ¢ \ 3 y ¥ ¥ v " ’ " 3 N » b 3 - "8 A 2 L} 4 G L R) sall & ‘ N N U

gk, 2

< Cd -0
k-1+3 L2(I)
< k(k!)2
Hence by Theorem 1.1 of (4] we have for k > 2, la| = k
' - ' k !
11D 01|§B+k-2‘L2(S) < Cdzk..
Further
i (1)
iy H < Cl»g ) !‘
Hl(S) 1 1/2 L2(I)
iqllle
= Che R ().
2
1
Hence U1 € 3;(8). Let now 1/2 < 31 < 1. Set AR = 31 - 1/2. As
before we have for k 2> 2
a¥y
I (—2) 2(r*72*") 2rarae « ca*(kr)?
s dr
and we get U_i < ®. Hence U, €« 32(3). Let us consider
Hl(S) i 3

now the function Vl(r,e). Then as before

k

[ oV -

} (—k—l)z(rk 2+3,2 drde < Cd'fk(k!)2
S 3r

Further, using Lemma 2.5 and k > 2 we get

ak akg
I (k—i)z r-z(rk-2+f3)2rdrd6 = J ( kil)z r“z(rk-2+@)2rdrd9
s S dr
< “(g(k g . uf‘ .
1 k-2+f31 2( )
25
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S
S 4
N
2k,. , (k-1) _(k-1) . 2 Ny
< Cd" i (g -g (0))¢ Lk %,
1 1 k-2+3 Ly (1) -
k-1 2 2 r
+ (gi )(0)) X J - ;..
l<-2+'3'1 L2(I) .:
)
2k, (k-1) 2 . (k); 2 o
< Cd, [(g (0))° + wg, '@ .o ]
271 k-1+3, bp(1)
1 2
« caZ¥(k1)?. %
In the last inequality we used the fact that >
hY'
(k_l) < k .‘-
lg (0)I = Cd4(k!) “
Y
akv1 )
and realizing that —5=5— = 0O for j =z 2 we have for k :» 2 R
ar¥~Jged -
i 1 p& Ky kS
1D v1|§!3+k_2!1L2(s) < CAd k!, 2
R * o
Further for 0 < Bl < 1/2 and I = (-1,0)
“
L.
!'2 3 (1)- \2 I ‘ 2 4
hv i s Clig," '8, 0% , + i(g,(x)-g,(-1))%_ « 1 v
Hl(S) 1 1/2 L(I ) 1 1 1/2 Lz(I )
“u
s ciigiMen? |+ (g xmg (-1008 . ] o
3 L(I ) “1+3, Lo(1) "
s,
(1) ¢ \ (1), z
< Cl[Ilg $- | « + (g ~ ] A
bos, L) bog, BT .;*
< Clig,l . o
3 .
~
.-“
In the last inequality we have used once more lemma 2.5 and the '.:
- ’\
fact that Rl < 1/2, Quite analogously we prove that V2 S ‘Bf(S) ,
_\.
-4
RS
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Lemma 4.11. Let g = 3%(1), 0 <3 < 1/2, g(-1) = 0. then for

3
0<) <1/2, v=gt_ <8 (1),
4 3+y
Proof. For k z 1
1
[ (w6232 ey
-1 k-1+3+y

A

1 k 2
K) (€),7 ,(k-6)| ;2
J [z[z]g Y ] o

-1le=0 k=143 4/
k.1
< CdeZ (g')2((k-0)1)%2 2 ax
“r =R Ty ey
2=0 * -1
k1
< ca?k Z J (g'4))2%2 ((k-€) 1) 2dx
=1 " -1 I+i-1
1
+ J (g)2e? (k!)2dx]
» 3-1
k1
< Cde[z [ g\ 2% ( (k=€) 1) 2dx
£=1 -1 3+€-1
1
+ { (g’)2§g(k!)2dx] < Cdfk(ks)z
%]

when we have used Lemma 2.5 in the above inequality. Further

1 1

2 [ L
vidx = | g2§2 dx < C!!g‘2
-y 1,1
) .l
1 3

by Lemma 4.1.
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v = g¢é Then for 8+, > 1, v = B} (I) and for A3+, < 1,
34y -1
v € ‘B? (I).
3+y

Proof. (a) Assume first that =73+ > 1. Then for k - 2

1
; J (V(k))zi‘2 - dx
k+3+) -2
-1
k1
| < Cde[z [ (g )% A ((k-€)1)2dx
-r={k=€)+k+3+) -2
: £=2 -1 ( d
1 1
’ + (k!)2[ g% ax + ((k-1)1)2 J g 28?2 dx]
3-2 3-1
-1 -1
;
k1
< ca?k Z [ g€y 22 ( (k=€) !)dx
& ), R48=2

1
+ (k!)"’j g2 ax|.
3-1

In the last inequality Lemma 2.5 has been used. Because by the

imbedding theorem ([g’'(0)| ¢« C:g-" using Lemma 2.5 once

more rendering that -1 > -1/2 we get

1

II2.2 ’ 2
g'“¢7dx + g (0)!

3

| I }
N
N

v

Hence

J vk 2e ax < cdfk(k!)z.
k+3+) -2

Lemma 4.12. Let g = 3?(1), g(=z1) =0, 172 <4 <1, 0 <, < 1,2,
3

B DAl




Y

-

Further as before

Because g € c®(1), ve L,(I).
(b) Assume now that 3+, < 1

exactly as before that

Further

1
J vzdx < C[ 92037

-1

Because -y+1 > 3 by our assumpti

Using Lemma 4.2 we get also dv”L
2

Lemma 4.13. Let @ be a curvilinear polygon with the vertices

Ai' i=1,...,M. Let u-c€ 32(0) and w be such that
Al < tol
iD wl < C§_!0!+r|a|!d ,
r = (71,...,7M), lal > 0, Bi-)i > 0, ryo? 0.

32(0) where 3, =
3

Ul

Then v = wu

1
< C[ g”2§3

. Then for k

dx < Cdfk(k!)z.
k+3+) -2

1
_ldx + J g ¢
-1

4

on we see that

(I)

2,2 dx}
=7

. 2
+1dx + (g’ (0)} ].

2 2 we get




Proof. For k =2 2, |a| = k,
2
J Ip!* v 22 _dx < Cde[jE: J lnk"ullo‘wl} +2  ax
0 la]-2+3 Fr i K-2+3
k
) k-¢ 2.2
B Cd Z”eﬂ)l) J /D™ i ’k—z—uxdx
Kk
< Cdfka:(<f+1)s)2((k—1+e)z)2 . Cdgk_z((k-2)!)2.
¢=0
Further

[ IDlvlzdx < C[J IDlulzlwlzdx + J
Q Q

because by lemma 2.1 u € c®@).

IuIZIDlwlzdx} < x
Q

It is very easy to prove

Lemma 4.14. Let g e 8%(I), 0 < 3 < 1/2. Then v = gé = B>(I)
3 3
and wv(:1) = 0. Let g < 3}(1), 1/2 < 3 <1 then v = g¢ - R?(I)
K4 3

and v(:1)

]
o

Proof. The statement that v ¢« 3%(1) can be directly verified.
3
By Lemma 4.1 v is continuous on 1I. If wv(-1) = 0O then

vz(x) >¢€¢€ >0 for all |Ix+1| < 6. Hence g2 = (vé_l)2 > e¢2

which would contradict with the assumption that g =~ 39(1),
3

0 <3 < 1/2. The proof of the second part of the lemma is
analogous.

Lemma 4.15. Let u € sg(o), 0<3 <1 and u=0 at A . Then

u§-1 < 8;(0). The proof follows easily using Lemma 2.2.

Theorem 4.2. Let Q be a straight polygon with the edges ri,

30
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. gl R _ ,
i=1,...,M, and let g = 3;(r1), 0 < ii < 172, ‘i = <i+1,2,
2 ) :
i=1,2 (respectively g = 3-(I1), 1/2 < ¢, < 1, ¢, = . -1"2,
3 i i i
i=1,2) and g(Ai) = 0, 1 = 1,2. Then there is u such that
(i) u = BE(Q), with 0 < ¥j <1, j = 3, ..M, arbitrary.
(ii) u!r =g and ul. =0 for j=2.....M.
1 J
M 2 7
Proof. Let » = ] !x—Ail , X = Q Denote g = g,+. Then obvi-
i=3
ously g € 8!(F1) (respectively g = B?(rl)). Select now
3 {

0 < ’i < 1/2 such that 0 < *+/i < 1/2

{respectively

- .
0 < 3+ Denote g =g ] Ix-Ail gé

-1 < 1/2).
i i=1

y ,0) By Lemma 4.1 and 4.2

g

(71,72,0.---

Using Lemma 4.11 (and 4.12) we see that

1

3+y-1

tively é € B (I)).

g

r

H'(Q), AU )

=

0O and U on and U

FJ.

To see it let

.,M. Function U

P(xX), xe T , pe c"(rl). P(x) = for

1
£/2, 1 =1,2 and ¢(x) = 0 for |x—Ai| >, 4

sufficiently small. We define

U Ul+U2

where AU € HI(Q), i-= = g(l-¢), U

i = 0, U

i U

1,2, | |
1, 2

gl(l-9)

Yy

hl(x) =0

= 0 h

1
obviously exists.

and on ..M. Because

and for |Ix-A < £/2, U

1
W - HI(Q)

i

By Lemma 4.10 there exists such that

U

ge, and W|. =0, j=2,...,M. Hence , €exists too.
3
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U has the following properties:

(1) AU = 0.

(11) U!r = g, U!r_
1 J

(iii) g 1is analytic

(iv) in =Q ~

255

ciently small there is wi

where

A - = g.
i ri Qi,&

By the selection of

W

now the same arguments as
conclude that U « 33(0)

i 2] - =

By Lemma 4.13 we see
Gl+1/2 {respectively Bi
arbitrary for

J=2,...,M,

3 = B4+py+1/2

j o= 3,...,M.

=0, j=2,..

on rl

{x]|x-A

{not o

<8

.M.

n .).

1 =1,2

such that wi = B (Oi . )

(respectively 3 = 3+,-1+1/2) and

(This follows from Lemma 4.10.)

1

in the proof o

where 3. = 3,
i i

and 1 > 3, >

that u = wéru

= 81—1/2), i-=

In addition

Let us outline the main idea of the

Let si'éi = (ri,eilo < ri

are the polar coordinates with the origin in A

<
80 1 such that si,2bi

Theorems 5.7.1, 5.7.1" and 6.6.1

as in the proof of Theorem 2.1 of [4],

due to the analyticity of

g ~ 32

to prove only that 3

Let

o) (]
<.:1,0(i

} . we have §i

> 1/2, i = 1,2. Using
f Theorem 2.1 in (4] we

+Ii+1/2 (respectively

1/2.

el , -
€ 33(0) where ii

1,2 and 0 < 3, < 1

J
u]r =g and uf. =0,
i J
assertion that U = ¥ (Q).
¥
[ 9
< ri) Q@ where (ri, i)

We select

o Sj,26j =9 for i < j. Using
of [17] we conclude similarly,
M
that U ~ 32(0 - U s, . )
Y 1,”.//4
M 3 i=1 i
g on [ - U si,ﬁ /4 Hence we have
i=1 i
(S ).
fo)
il i/4
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wo(l) =1 for O « r < 1/2
¢0(0) =0 for x 2 1
(r) = ¢,(50—) = o(r)
(psi —q)ozTi"wr-

Denote v = ©U, Then v can be understood to be defined on the

(1)

infinite sector Qw = ((ri,ei)lo < ri < ®, 0 <6 < wi) when

i

extended by zero outside of si,ﬁi and we have v < HI(QLi)).
Now we prove that v < B (s1 5 /2) as in (4}.

Remark 4.3. We have assumed that either g < BE(F ), 0 < é < 1/2

/

or g € 3§(F1), 1/2 < & < 1. Obviously Theorem 4.2 is correct if
g € 3;(r1) only in the neighborhood of A1 and g € i(r ) in
the neighborhood of A,. Theorem 4.1 leads easily to the next

2

theoren.

Theorem 4.3. Let O be a straight polygon with the edges T .,

i
i=1,...,M and let
1 - - - -
- ’ = H IR ’ ] IB' ’
g € BB (Fi) Bi (61'1 i,2) 0 < 61'1 i,2 < 1/2
i
ﬂi,l = Bi,1+1/2' 81'2 = Bi,2+1/2
or
g=B2(T,), B, = (B, ,,B, ), 1/2 < 8 3 <1
3 i’ 713 i i,2"" i,1' 14,2 !
i
By,g =By, 171/2. By 5, =By ,-1/2, 4= Q= (1, M}
= . g3/2
Let further g be continuous on = U Fj. Then g = % " " (1)
ieQ 3
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1,2,81’1), for Ai ey (if i-1 ¢ Q or 1 ¢ Q

then we define 51_1 2 = 0 respectively A, = 0) and O < Ei <1

arbitrary for Ai € y.

where 3, = max(3.
i i-

Proof. Because g is continuous on ) we can construct a poly-

nomial P on Q such that g-P = 0 at Ai. Then we can apply

Theorem 4.2. =

Remark 4.4. It is obvious how the theorem may be modified when g

2

1
r :
€ 3,(T;) respectively g < B}

(Fi) in the neighborhood of Ai

only. See also Remark 4.3.

Remark 4.5. Theorem 4.1 and Theorem 4.3 are complementary, which

is analogous to the theorems of trace and extension in usual
1

Sobolev spaces on smooth domain, namely, if g < B. (Fi), 0 <
. B4
Bi j < 1/2 (respectively g € 8% (ry, 172 < Bi j < 1) j=1,2,
' /31 ’
then we have an extension by function G € BE(Q), Bi = Bi 1+1/2,
Bi+1 = Bi,2+1/2 (respectively Bi = 8111-1/2, Bi+1 = 81'2—1/2),
2 1 N >
[ = = - 3
and if G < B.(Q) then G|, g < 3. (F3)e By 4 = 857172, 2,
i 3. +€
i
2
= i -
B a1 1/2 for 1/2 < Ri'Bi+1 < 1 (respectively g < $; +<(Fi),
Ii I
81'1 = Bi+1/2, 81'2 = Bi+1+1/2 for 0 < Bi' Bi+1 < 1/2), € > 0

arbitrary.

Theorem 4.4. Let Q be a straight polygon with the edges ri'

i=1,...,M, and let g € 3?(F y, 0 <3, <1/2, i=1,2, %, =
3 1 i i
31+1/2, i =1,2 (respectively g = B}(Fl), 1/2 < &i < 1, di =
”
81—1/2, i=1,2) Then there is u such that
(i) u e B;(Q) with 0 < GJ <1, 3 =23,...,M arbitrary.
34
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(ii) u!rl = g and ulrj =0, j=2,...,M

Proof. By Lemma 4.14, § = g$ = 3}(F1) respectively 3?(r
2] 3

1) and

E(Ai) =0, i 2,3, and hence by Theorem 4.2 there is v « %f(o)

§ on Fl and v = 0 on Fj, j=2,...,M. By

Lemma 4.15 the function v§_1 has the desired properties. -

such that v

Theorem 4.4 leads immediately to

Theorem 4.5. Let Q be a straight polygon with the edges T _,

i
i=1,....M and let
e 8% (T.), 8, = (B, B, ), 0 <8, .,3, . < 1/2
g I LA 'i,17%1,2 i,1'74,2 '
i
Bi,l = Bi,1+1/2' Bi,Z = Bi,2+1/2
or
cslr,, 8, = (8, .8 1/2 < B, .4
9= % Wyl By = By 100,000 U/ 1,17%1,2 <
i
31'1 = 31'1—1/2, 61,2 = Bi,2_1/2' i< Q= {1,...,M}.
_ = 1/2 - = -
Let = UT.. Then ge€ 8 () where 3. = max(?3. RS )
1€Q1 3 1 i-1,2 1,1
A, €7 (if i-1 e Q or i ¢ Q when we define Bi_g 2 =0
respectively 51 , =0) and 0 < 51 < 1 arbitrary for A; < . O

Remark 4.6. It is obvious how Theorem 4.4 has to be modified when

1
g € 3-(Fi) respectively g € 3?(Fi) in the neighborh~>d of Ai
R 4]

only. See Remark 4.3.

Theorems 4.3 and 4.5 give the characterization of the bound-

ary conditions which guarantees that the solution of an elliptic

partial differential equation of second order with analytic coef-
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A e N

ficients on a domain O with piecewise analytic boundary belong

")

$

to 8§(Q) or Gg(Q) (see Theorems 3.2 and 3.3).
In the concrete cases these conditions are usually very easy :1
to check. Let us state a useful lemma which characterizes the .

space 3}(1) (respectively B?(I)).
B B -
LY
.
Lemma 4.16. Let :
- R
Q, = (z = x+iylx € I, |yl < a&(x), o > 0} N
'l
¢
and G(z) be holomorphic function on Qo such that for 1 = -,
(vl,vz) | f
1G(z)| < C? (Re z). |
4
Let g(x) = Re G(z)|; or Im G(z)|;. Then for v, > -1/2+(j-1), N
Bi#vy > 1/2+4(3-1), 0 < B, <1, i =1,2, j =0,1,2 N
gix)  82(I). ®
3 \
(9
L%
Proof. By Cauchy formula we have for k > O '1
1g™ ()1 s et (x) (8(x)) Fkta T, :Z
A
Hence -
1 2l
J 82 g™ (%)) %ax < (Ckza’k)J #2 . ax < (c,a%k)?
-1 k-1+43 -q v¥3-1

provided that vi + Bi > 1/2. Further for k =0

lg(x)} < C% (x)

and hence for ui > -1/2, g = HO(I). The lemma is proven for

J = 1. The proof of the case j = 0 1is analogous. Let us con-
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A WM el 2

sider now the case j = 2. We see that for byt Bi > 3/2 and

k =2 2

1 1

J 82 _1g'™®) (%)) %x (Ck!a_k)ZJ 82 cax < (e afkn)?, |

-1 k-2+43 -1 p=-R+k-2+73

1A

Further if vy o> 1/2 then also g € Hl(I). : z

Instead of |G(z)| < C@D(Re Z) we can assume that

-

IG(z) - P(z)| < C% (Re z) where P(z) is a polynomial.
Lemma 4.16 1is very useful in practice. For example if ¢
is analytic on fi then g(x) can be extended into some neigh-

borhood of Fi and therefore g < B;(I). Lemma 4.16 characteri-

zes very well the structure of the spaces B;(I) {respectively

2
BB(I)).

-

Lemma 4.17. Let g € 3{(1), 0 < Bi < 1/2. Then there exists «a >
B
0 such that g can be analytically extended onto Qa and

16(z) - g(-1)12%)

- g(1)

(x;1)| < Ccé .(Re x) I

1/2-83

(g€ ¢c%I) by Lemma 3.1).

Proof. Since g € 3}(1) we have by Lemma 4.3 for Lk : 1

B
(k) 2 "
g (x)| < c[& -(x)] dk!.
k-1/2+83
Hence the series
X
. _ (k+1) _ k1 -
g(x) = > g ¥ () (xox) K Ly kg e
k=0
¥xg)
is absolutely convergent for Ix—xol < 3 3 and hence also
37
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[»
. - (k+1) _ k1
G'(z) = Zg (x5)(2-%5) " 7
k=0
Blxg) --1
converges for Iz-xol < 3 7 and |G (z)] < Cé. (xo), Xy =
3+1/2
Re(z), and C is independent of x which yields the lemma. -

0’
So far we have assumed that Q@ 1is a straight polygon. We
did not exclude the case that the internal angle is 2n, 1i.e., we
did not exclude the slip domain. Let us now consider the curvi-
linear polygon and assume that it is a Lipschitzian domain. let

us prove first

Lemma 4.18. Let O = {x.,x.!-1 < X, <1, 0 < x,. < h(xl), h(xl) >

1 "2 2
a(x1+1), h(-1) = 0, a > 0}. Assume that w(xl,xz) is an analytic
function on S = {xl,xz!(x1+1)2 + xg < 4} such that

"
o

(1) w(xl.h(xl))

(ii) g%—(xl,O) >a >0, -1 < x < 1.
1

1
Define
r = | = =
I {xl,xz, 1« x1 <1, x2 0}
F2 = {xl,x2|—1 < X, < 1, X, = h(xl)}
and let T =Q n S1 where S1 = (r,0|0 <68 < 2m, 0 < r < 1}
where (r,f) are polar coordinates with respect to (-1,0) and
" - - -
T =S -T. Let g, < B(I.), 0 <R, <1/2, B. = 3. (respectively
1 1 " 1 i 1 2
C w2, - - _ oo
g2 = 35‘I1)' 1/2 < Bi < 1, Bl = Bz), gi(-l) =0, i=1,2 and
¢ =r,

Then there exists
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{
4
N
N 2 * 2,% = _ -
? V., € 8°(T), V1 < B°(T ), B = 3+1/2
’ .

1 3 3
" 2 * 2 * - -~
Y (respectively vV, € 8°(T), V, € B°(T ), 3 = 3-1/2)
'l 2 E 2 f}
,n‘
() . = = al =
K such that Vi 95 and Vi g; on Fl ~ T and vi,vi 0 on
r,» T.

s Proof. Let ¢(r,0) = w(r,e)%. Then ¢(r,0) = ¢(x1) is analytic

2 on fl and ¢(x,) > a > 0, hence w-l(xl) is analytic on Fl

K too. In addition ¢ =0 on TI,. Further IDaw(xl,xz)l

! -

N Clal!é |O"Idl(j" by Cauchy theorem of the theory of two complex

]

) ~ - ~

f variables. Define g1 = gl¢ 1(xl). Then 9, € B-\F ) and by
. 3

e Lemma 4.11 there exists U1 on S1 such that U1 “ BE(SI)’ 3 =

i\ 13

A 3+41/2 and U_| = g,. Define now V, = U.¢. Using Lemma 4.13

b 1'r, 1 1 1

- 2 . 2, *

; we conclude that V., € 37(T) (respectively 3°(T )), V.| =g
~ 1 = = 17 1
N ] A 1
~
: and V1!r = 0. The proof that V2 has desired properties is

i 2

gquite analogous.

T
3 . . = = '

¥ Lemma 4.19 Let Q (xl,xz, 1 < X, < 1, hl(xl) < x2 < hz(xl)

.,}, _ - =

' hl(xl) < n(x1+1), h2(x1) > o(x1+1), a > 0, hi( 1) 0, hi(xl)

> analytic functions on I, i = 1,2) and

o

] = | - =

ﬁ F1 (xl,xz, 1 < Xy < 1, X, hi(xl))

)
v

) Qn=QﬁSn,Sn=(r,9|O<952n,0<r<n,n>0),

oyl

‘o Q =S -0,

J n n
‘

\

' where (r,f) are polar coordinates with the origin at (-1,0).
) Let g, = B%(F ), 0 <3 < 1/2 (respectively g, = 3?(r ),

3 1 3 1 2 , 1

Y.

d
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1/2 < 8

i < 1), Bl = 32, gi(—l) = 0 and let ¢ = r. Then there
%* * - -
exists 7 > 0 and V,6 € Bz(Q Y, V, € BZ(Q Y, B = 341/2+5, £ > 0
1 7N 1 =''n
3
« _ .
arbitrary (respectively V, € 32(0 ), V., = 32(0 Y, B = 3-1/2+¢)
2 Z 7 2 g N

such that V.|, ~ = g; and Vi|r g =0
1"%p 2 n

Proof. Because hl(xl) is analytic on I it can be analytically

extended onto I, = {-1-6 < x

5 < 1+6}. Then the mapping M

1
(xl,xz)—*(yl,yz), Y, = Xy ¥, = x2—h1(x1) is analytic on Qn,

n =58/2 and M(Qn) = §n. For n, sufficiently small we have Hﬁn
*

* *
~n S = rl ¥ F2 where Fl = {Yl'yzl_l < yl < =1+n, Y, = 0},

x - *
r - - - = = -—
hz(yl) > 01(y1+1). In addition it is easy to see that IJI,IJ_ll
<4y <ax where J is the Jacobian of the mapping M. Because

* -
h2(y1) is analytic on -1 = Yy S -1+n1 we define w(yl,yz)

x
-y2 + h2(Y1) and w(yl,yz) has the properties in Lemma 4.18.

Using now Corollary 4.4, 4.5, g, € cf(rl), g, € G?(F )  and hence

3 3 1
-1 1 * -1 _
using Lemma 4.6, gl(M (y))]Y =0 S-(rl), g, (M (y))|Y -0
2 53 2

*
c?(rl). Using Lemma 4.8 and Lemma 4.18 there are functions V

3 1

* * -~
and V (respectively V and V_.) on Q ~ S (respectively

1 2 2 n U2
X
Qn ~ S ), which belongs to ﬁ? (Q_ ~ S ) (respectively

02 B+e /2 n P

=
52 (8 n S_)). Using now Lemmas 4.7, 2.3, our lemma follows.:
Bes /2 My

The lemma leads to the following.

Theorem 4.6. Theorems 4.3 and 4.5 hold also for Lipschitzian cur-

vilinear polygon when Bi are replaced by §0+£, & > 0 arbitrary.

Proof. Because the edges are analytic curves and g are analytic

40
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;- on Fo (but not on I_.) we show similarly (as in the proof of

0
¥
¢,
X Theorem 4.1) that the solution u of the Laplace equation belongs
] to 83 (Q). This can be done identically as in the proofs of
v: B+e
1
:g Theorems 3.3 and 3.4 of [6), showing that u ¢ G§+£(Q). -

Remark 4.7. Comparing the respective theorems for straight and
h curvilinear polygons we see that in the latter case we are losing

KX slight in the regularity. It is not known whether this loss can

be removed.
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D 5. The finite element method

Y Let us consider the finite element method for solving the
model problem (3.1). We will assume that Q is a curvilinear
polygon and for simplicity of the exposition we shall assume that

the vertex A1 is located in the origin and the singularity occurs

{ only in the neighborhood of Al' In this case we can assume that
& ¢ = r.

Let us first describe the meshes which we will consider. Let

o = (@y 4y, 3 =1,....,m#1, 1 =1,...,1(§)) be the partition of

- e e o

satisfying the following conditions (see Figure 5.1 where indices

i,3 of Q are given):

i,]

; (i) Qi j are open quadrilaterals or triangles (curvilinear

quadrilaterals or triangles), the intersection of any two @

i.3
' is a common vertex or the entire side or is empty (the mesh shown
f in Figure 5.1 is a geometric mesh with respect to the vertex A1
E (see (iv)). If the singularity would occur also in other vertices
; then similar refinement would be in the neighborhood of Aj, j >
. 1).
a (ii) Let hi,j be the diameter of Qi,j and hi,j the

diameter of the largest circle inscribed in Qi j We shall

’

assume that there is a constant 1 independent of n such that

(5.1) hy, 4/hy § < A

Mot L,

(iii) Let M = 1 4 < I(j), i< J = n+1} in which

(Mi,j’
Mi j is one to one mapping of the standard (master) square S =
y (1,1]<[-1,1] respectively standard triangle T = (¥£,n! Q0 « 7 =
1-¥, -1 < ¥ < 1) onto 51 i If T is a triangle then we will

Y assume that M can be extended into standard square S (T |is

: i'j

42
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Figure 5.1. Scheme of the mesh.

half of S) sucl that Mi,J(s) = Gi,j < Q@ and Mi j still sat-

’

isfies on Gi j all conditions which will be later imposed on

Mi,j' Let Pi,j,e and ’i,j,( denote the vertices and sides of

. -1 -1 .
Qi,j' then Mi,j(pi,j,f) and Mi,j(’i,j,e) are vertices and

sides of S, 1 < € < 4 (respectively vertices and sides of T

with 1 < € < 3). Moreover if Mi j and Mm k Mmap (closed)
standard square S onto element 51 3 and 6m  With the common
——— -1 -1
sid =P, ' . '
e ¢ 1 P2 then for any P € dist(Ml'j(P) Mi,j(Pf))
-1 -1 -
diSt(Mm,k(P)’Mi,j(Pf))' € =1,2,.
Let Mi,j(s) - Mm,k(T) =y = PI,P2 be a common side of the

quadrilateral and a triangle. If , is the image of the sides
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of the same length we make some assumptions as before. If , is
the image of the sides with different lengths, then we adjust the

assumption in the obvious way.

We will assume that the mapping Mi j can be written in the
form
x=X1’J(’fr77)
(5.2) (¢,n}) = S (or T)
y = Yi'j(f,n)

with Xi j,Yi j being smooth functions on S (respectively T)

and for which more assumptions will be made later. We shall assu

that for lal < 2

(5.3) |D Xi JI,ID Y ,j' < COhi,J
and

2 2
(5.4) Clhi,j < Ji,j < Czhi,j

where CO'Cl C2 are constants independent of 1i,j and n and
Ji,j is the Jacobian of the mapping Mi,j'

The mesh Qg(o < 0 < 1) is called geometrical mesh with the
ratio ¢ < 1 with respect to the origin when in addition follow-

ing conditions are satisfied.

(iv) Let 4d, j denote the distance between the origin and

1,
quadrilateral Qi J; then we assume that
(5.5) cont?d dy g o™ for 1<y < on+1, 1< i I(§)
(5.6) di 1 =0 for 1 < i < I(1)
(5.7) Rldi'j < hi,j < x2di,J
44
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3 i,1

where c,E,Yi, i=1, .4 are positive constants independent of

i,j,n If Oi j is a triangle then we assume that

(5.9) dist(G, ..0) - C dist(Q., .,0)

1,) 1,)

and if is the common side of Qi ; and Qm ¢+ J > {. then

is the side of Gi J.; if » is the common side of Q, ; and

Qi,j' then ) 1s the side of Gi,j or Gf,j; it 1s the

side of Qi j and the part of 3Q, then ; is the side of

Gi j° In Figure 5.2 we show the association of Gi ; and Vs

In our example R(1) = 5, R(2) = 12 as can be seen the numbering
! is largely arbitrary. Qi j are shadowed by full lines and G1 j
b ’ .

by extended dashed lines. The indices i,j are indicated in

Figure 5.2.

Let us verify now our assumptions. The condition (5.9) is

obviously satisfied. Let ., = Q

i +
1 011,2 Then is the

4,1° 1

side of G11,2 (= 011'2 2 010,2) which is our condition.

Let 72 = Ql,l ~ 02'1. Then r g, is neither side of Gl,l

Y nor G2 1 and our assumption is not satisfied. 1In this case we

Ga,1 = 9,1 7 9 5

In application we can always assume that a proper associatiocn

have to define

) between Qi j and Gi j always exists. Nevertheless we remark
that our assumptions mentioned above could be difficult to precise-
: ly verify, especially that Mi j is one to one mapping. Never-

theless this is common in the finite element practice.
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Figure 5.2. The scheme of the mesh, ()i j and Gi 5

So far we have assumed that the geometric mesh was refined

only in the neighborhood of one vertex (singular point).

Analo-

gously we define the geometric mesh in the neighborhood of every

or some vertices. Instead of the formal definition we show in

Figure 5.4 a geometric mesh for the domain ¢ shown in Figure 5.3.

The vertices in which neighborhood the mesh should be refined are
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numbered.

n

[}

>,
. 5

) 6 8 R

S
v R
> 9 -
o e
S / e
P 3 e
: 4 >
; >
——

¥ .
[ [ ->

: |

" > 7

5

"

[}

e

A

f Figure 5.3. The domain Q.

:|

¥

Y

i

N

-

'.

Figure 5.4. Geometric mesh on the domain ¢ shown in Figure 5.3.




Let now P = (pi 5’ 1 < i<« R(J), ¥ <« ] n+l) and Q =
(qi i’ 1 <1 R(j), 1 < j < n+1) Dbe the degree vectors with
integers P; j'qi j 0. We define the subspace SE'Q(Q:) =

= -1 -
{plo(x,.,x,) = <I’(Mi'j(xl,xz)) for (x,.x,) < Qi’j, éi,j(f,n), Fan
€ S (respectively ¥#,n € T) is a polynomial of degree =« Py j
in ¥ and of degree < a4 3 in n, (respectively of total
P.Q.1 4n, _ B.Q D

degree max(pi'j,qi,j)}. Further we denote S (Qa) =S (@)
n Hl(Q) (usually but not always P; j = qy j).

Let us impose now additional assumptions on Q: First let

us assume that Qi j e o are quadrilaterals. 1In this case let
. . - an
7i,j,£' 1 ¢« £ < 4 be the side of the quadrilateral Qi,j = Qo'
Then we assume
x =h, ¢, . ,(¥)
(5.9a) = 1,374,3.¢ “1<£ <1, €£=1,3
VI ly =y (x)
i,371,3,¢ "
x =h, 0. . .(n)
(5.9b) /1j€— 1,371.,3.¢ -1 < n <1, &= 2,4
Y: hi,jwi,j,((n)'
and that for some constants C > 1, L » 1, which are independent
of 1i,j,¥ we have
(k) (k) k _
(5'10) "pilj'(" "pi,j,(l S CL k!r k_ 1r2:
and that the mapping Mi j which maps S onto Q; j has the

form
48
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the vertices of

f - _ (1-n)
(1+£) {1+1))
+<pi,j’2(n) 3 + i'j’3(‘), 5
(1-£)
ey 5 am T hy
_ (1-¢) (1-n) (1+8)(1-n)
Xi,j.1 2 2 *i,5,27 2 2
- (1+£) (1+n) (14n) (1-F)
i,3.3 2 2 i,j, ¢ 2 2
(5.10)M, =
el O (g) L1:1)
. i, 3% i,j.1" 2
X (1+%) \ (1+n)
* ¥y, ,2M) T oty 5 (P
{(1-¢)
Py, y,e(M) 7 by
_ (1-£) (1-n) _ (1+F) (1-7)
Yi, 3,1 2 7] Yi, 5,272 2
_ (1+2) (1+4n) _ (1+n)(1-¢)
¥i,5.,3 72 3 Yi, 3,4 2 2
where we denoted by (xi,j,f’yi,j,f) = Pi,j,f

Q, .. The notation is depicted in Figure 5.5 a,b.

i,3

. £
j»3
Mi,; S
Y12 Ya >
Pi,j.2 ) %P
y, 4, 1
I A L |

Figure §.5.

The curvilinear quadrilateral Qi

and the standard square

S.

’

Fldsed

PR A AN

] Ry

P A AL S

.;vlll-
A L A bafs >~

£« ¢
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Figure 5.6. The curvilinear triangle @O

In the case that Qi j is a triangle the mapping is essentially :
' -,
similar. We will define it only for the case when only one side 2
is curvilinear. Figure 5.6. shows the notation. ﬁ
Py
'
ﬁB ATI
Pi.j,3 ST PTTTTIT
hnhj : ij'
~ ~ | ':"
. ')
! o
| N
Pi.j, i Pij2 = = = 3 2
'.-
N,j.2 a no P e
V4 — Y N
A 2 A p
»":
tJ‘
-
s

and the standard triangle T.

- - L. 1t 1+£)1-£ -1 :
1-%-n F+1 n ®
+ _
xl[ 2 ] T Xy m Y %33 &
5.11 M., . = -
( ) i,j T ] N
1-¥ 1+£)1-¢-n Y
= F = Fy- —_— - —_— . R \
y =¥ yam H""-" Y1 72 Y2 T3 )T1-¢ }hl,_] <
‘ 1
1-€-n F+1 n ®
! * Yl[T] t Yy T3t Y33 -
x
We see that we can extend M, j onto the standard square S. o
"
Let us now describe the finite element method. It is a stan- @
dard one. "
(a) First given the nonhomogeneous Dirichlet (essential) iﬁ
e
boundary condition g[O] on r(o) we project it into the space ?
P,Q.1,.n N
on traces of the subspace S (Qa) = S. We denote this -
50 &
by
\‘
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P

*

o>,
vl
[0] (0) A

projection by dg- i.e. we replace g on T by dg- :
l_.,
(b) The finite element solution ug = SE Q. 1(Q ) is now .
defined in the usual way such that x
| P
= [1] o~

. B(us,v) = fvdx + g vdx t
0 r(1) ,
J‘_r

"h.
holds for all v = SE'Q'I(QE) a Hé(Q) when ug = gS on F(O) C.
3

| and ;

2

(5.12) B(us,v) = J[ Z 1 Ja—x ——+ Zb —v+cuv]dx =
i,j=1 o

.I

Pd

We are assuming that B(u,v) satisfies the usual inf sup (B-B) AL
condition (with the positive constant independent of SP'Q’I(QS)) g

1 1

on HO(Q)-HO(Q). R
The projection g[O]-—»gs is possible to define in different ~
ways. See [10], {11]. We will use the projection analyzed in [9]. N
Let /) = Mi J(r) < F(O) where 7 = (-1 < ¥ < 1, n = 0) and let ﬁ
g(E) = g(M, j(F,)). Then g is defined on ;. (Because we will -
assume that g[O] < 38(7), R < 1/2, it is continuous.) We now a
s

define .
. L A

gs(E) = a+b«+qp o

where & is a polynomial of degree p = p,. in ¢, & (-1) = i
p i,] P N

qpu) = 0 and §s(z) = g(t) for F = :1. Polynomial Z;p is now -
@

such that 3
p-1 E

~ A )

(5.13) qp = ‘L_bkik(t) ;.
k=1 -

where Ck(f) are Legendre polynomials and bk are the coeffi- EQ
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cients of the Legendre expansion of (g-a-bf)’'. We mention that

the sum in (5.12) starts with k = 1 because
1
J (g-a-bt)'dx = 0.
-1
Further we underline that for any 5(%) which is continuous we

define bk in (5.13) by the integration by parts.

Finally we define gg(x) = §S(M;1j(x)). We have now the fol-
lowing.
Theorem 5.1. Let Q be a polygon or curved polygon. Assume that
the solution u of problem 3.1 belongs to GE(Q), , g[O] is con-
tinuous on F[O] and g. = g[O]/F € B}(F.), 0 <3, <1/2 or g,
i i g 1 i i
N X _ <P/Q,1,.n .
[ 3 (Fi) 172 < Bi <1, i€ Q. Let S =8 (Qo) and us is

the finite element solution defined above. Let 0 < u < v < ®

and let puj s pi,j =g, ; < ¥tn, pi,j’qi,j 2 1. Then

i,j

~pnt/3

(5.13) lu-u Ce

1A

t
S HI(Q)

where N = dim SP'Q’l(Qg) and the constant € in (5.13) is inde-

pendent of N.
The proof will be given in the next section.

In Theorem 5.1 we assumed that the solution is in the space
2
(

®s

Q). 1In section 4 we discussed the structure of the input data

(1] (1]

) . in the boundary condition functions g , 1i=0,1. g and f

guarantee that the solution of problem (3.1) belongs to the space

2
GB(Q).

Remark 5.1. Assume that bi =0 and ¢ > 0 in (5.12). If
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g!® =0 ana sP2:Q1(o") 5 P QM) then
(5.14) B(usl,usl) s B(usz,usz)
where ug = Spi'Qi'l(Qg) is the finite element solution. 1If

i
gfo] = 0 then (5.14) does not hold in general. 1If gfl] = 0 and
f = 0 and g[O] belongs to the space of traces of Spi’Q"l(Qg),
i=1,2, (i.e, gs = gs ) then

1 2

(5.15) B(usl,usl) > B(usz,usz).
If g[O] does not belong to the space of both SP"Q"I(QS), i-=

1,2, then (5.15) does not hold in general (although numerical

experience shows that in most cases (5.15) still holds).
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Lemma 6.1. Let g <€ Hk(I), k21, g(-1) = g(1) = 0 and let p
2. Let
®
6.1 ’ = :Z: R
( ) g’ (x) a; J(x)
j=0
where lj(x), j=0,1,... 1is the Legendre polynomial. Let
p-1
6.2 ’ = L .
( ) gp(X) ZaJ J(x)
=1
X
(6.3) gp(x) =J gi’j(x)dx.
-1
Then
6.4 1) =0
( ) gp( )
and
(m)__ (m) 2 . 1 [(p-s+1), (s+1) 2
(6.5) A e T Cp2(1—m) F(p+s+1) 9 L(1)

6. The rate of converjence

We will prove in this section the statement of Theorem 5.1.

Let us prove some auxiliary lemmas.

p2s =20, m=20,1.

Proof. Because g’ < L2(I) expansion (6.2) exists and because

g(+1) = 0, ayg = 0 and (6.4) holds. Further obviously
s 3
2 2
'- I] =
g g‘le Zlajl 73+1
j=p
We have
as 1 T (j-s+1)
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a where P? (x) 1is a Jacobi polynomial with

! -

0 for j = k ‘

N 1 2,s.8,s .
K [ (1-x7) J (x)? (x)dx = 1 g2s+l 2(s+3+1)
::‘. -1 (28+2J+1)T(J+1)r(2s+j+1)

for 3j = k.

'.::. Hence we get

". -
- -
v
——
-
-
!
»
N
0]
/S
=N
I 8
1]
Y
L&
N
o~
9]
<
—~——
N
o7
b

which yields

y .
‘ . Ap-s)! 2 (j+s)!
: lg'-g, “L (1) * Zla +1 T3

Tp+s) ! 2j+1 (3-s)!
\>
% . (p-s)!” s+1”2
., - (p+s)! ‘L2(I)
.,\
A
‘ﬁ and we get (6.5) for m = 1. Further we have
L (s V)
K g-g_ = Za.(e. T - |
e P J U1 T3-1723+1 |
X |

which immediately leads to (6.5) with m = 0.

‘}- ' Lemma 6.2. Let g € H (I), 0 <3 <1/2 (respectively g =
Ky e 0-<
o]
:: Hg’z(l), 1/2 < 8 < 1) an gp be defined by (6.2). Then
1Y
‘ . gl < Cpigl
h p L (1) H;’I(I)
)
L4
r
Fil'e 55
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" respectively

Proof.

because

also

Hence

Iej(X)l

Iaj

IA

We have for

1.

dg
P LZ(I)

" T < Bl |
egpth(I) < Cplgt

ig_!
P'L,(I)

0 < B3 < 1/2

+ Cégpilgi
H;'I(I)

< Cégp! g!

and g € H@ (I)

1
2j+1 )
J |J g (x)¢, (x)dx]

-1

1€

1/2
2:-2
j(x)l §3 (x)dX}

Let now g € H?'Z(I), 1/2 < 3 < 1. Then

1
. 23+1 )
| s > IJ g(x)fj(X)dXI
-1
2§+1 2j+1,
< C lgi < C g
2 Hi(1) 2 H2 %(1)
(I)

TR Y e T T A T W
AV AW AW ATl 5, P
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Proof of Theorem 5.1. The basic idea of the proof is very similar

tc the proof of Theorem 5.3 of [6]. Hence we will outline only
the basic steps and underline the essential differences in detail.
For simplicity and without any loss of generality we shall assume

that there is a singularity in one vertex Al only which is

placed in the origin; we did make tle same assumption also in (6].
We shall first assume that the mesh consists only of the quad-

rilaterals and that Py j = q1 j = pj > 1, The proof has few

steps similar to those in [6],[13].

Step 1. Denote Ui’j(é,n) = u(M1 J(C .1)). Then

(i) for j > 1, Ui j is analytic on S.

(ii) for some constants d and ¢ independent of i,j, i =

1,...,.R(3), J=1,2,...,n+1, and Ja| =k, k =1,2,... we have

(6.6) | D%U | < k'dk 1-8(n- j+2)

i,]

The proof is given in Lemma 5.1 of [6].

Let Ve € =1,...,4 be the sides of S. Assume that 7y
lies on ¥ axis (i.e., ry = I) and v(¥) is a polynomial of
degree p on 71 and vanishes at the end points of /1. Then
there exists polynomial V(¢#,n) of degree p in ¥ and n such
that
(6.7a) V(E,n)| = v(g), V(£,n)| =0, £€=2,3,4

71 7 e
and
(6.7b) vl 1 < Clvli 2 .
H™(S) H™ (7))

For proof see Lemma 5.2 of (6] or [13].
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Step 2. We construct polynomial 31 J.(lf,n) of degree pj in ¢

’

and n on S such that [i j = 31 j at the vertices of S and
for m=0,1,2, 1 = s, <
J pJ
(p;-s.)!
m 3 .2 J ] N L2
(6.8a) D (U, -$. )l < C — = 10, Ll 4
AP B O | HO(S) (pj+sj+2 2m) ! i, ] HsJ+3(S)

and using (6.6)

(Pj“sJ)!

45 . +2— [
(pJ sJ 2-2m)

sj+3(sj+3)!]202(1-3)(n—j+2)

A

[d

(for the proof see Lemma 4.2 of (13]). Define ¢i j(x,y) =

3 -1 .
Qilj(Mi'j(xl,xz)) for j 2 2; then we have for 0 < m < 1

m . 1-m, .m ~ v
D7 (u-e, )il < Ch, /D (U, .-¢. _.)i
i,] 0 i, ] 4,3 1,3 o]
H (Qi,j) H (s)
- (Pp;-s;)! 172 _ - .
< cnl™® J_J aSit3 (s +3)10(1R)(N*I+2)
i, (pj+sj+2—2m)! J
For j =1 we use p =1 and get
. ~ v 1-3 ,
{6.9a) U, -9, 8 < Ch far
i,1 "i,1 Hl(S) i,1 H§'2(Q)
(6.9b) U, L-%, )il < Ciull
i,1 "i,1 2,2 2,2
HB (S) H/3 (Q)
1-8
H (Qi,l) d HB' (Q)
in (6.9b) we define H2'2(S) with the weight ¢ = r with respect
to (-1,-1) and we assume that M ((-1,1)) = (0,1) = A

i,1 1°
Step 3. The function @y 3 are constructed separately on every

Qi j {hence the function ¢ composed from wi j € Hl(Q)). Let
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us assume now that , =Q. . * Q . Then (¢, .~-¢ yloo= 1 = 0;
4

i3 k,f i3 Tk,¢
nevertheless #» = 0 in the end points of . Let us assume first
that j 2 € 2 2 and that ) = Mi j(I). Denote y(¢r) = If(Mi j(’))-

Then #»(¥) 1is a polynomial of degree 5 = max(pj,pi) on I
vanishing at :1. Using the imbedding theorem we get
il < C max(+U, .-&, .- , U -$ : )

ul(r) i,j 1,3 HZ(S) k,¢& k,¢ H2(S)

and hence by (6.7) there is a polynomial V(¥ ,n) of degree p

such that Vi J.(15,17) =p» on I and
iV, (e < Clip: .
1.3 ' (s) H (1)
We estimate then (p! by (6.8) for m = 2. For j =+ =1
H (I)
function » = 0 on . PFor j =2 and <€ =1 we proceed simi-
larly using (6.9b). In this way we construct correction function
E = v N }
Vi'j(,,n) and Vi'j(xl,xz) Vi,j(Mi 'J(x ,xz,) so that
¢i,j+vi,j are continuous on every ) @[, y = Qi,j i Qk,(’ i.e.,
the composed function ¢ such that w,Q =9y J.+Vi j belong to
i,j ’ ’

HI(Q) and R

R(1) :
la-pi® < c[!fu! Z i1

H™(Q)
n+l R(1)
(Ppy=s;)! .
j 73 s; +3 1y2,2(1=3)(n+2-73)
+ z (pj"'s 31 (d (s. +3) ) .
j=2 i=1

Step 4. We estimate now u-¢ at the boundary F(O). Let , =

61 j " F(O). Assume first that j - 2. Then using (6.5) and the
(0]

assumption about g we can construct in the similar way as



before the correction function V., . so that (affix the correc-

i3
tion) ¢ = gg on plol 0l .y 61 5 and (6.10) still holds.
j=1
If » = 6i 1 N F[O] then we use Lemma 6.2 and the assumption
that p < rn and analogously as before we construct the correc-
tion function Vi 1 S° that function ¢ = Hl(Q) is constructed
which has the following properties:
(1) o< v VTl
g
{ii) o =gg on r(0)
(iii)
- -3
Hu-¢“21 < C[nzoz(1 Pin
H™(Q)
(6.11) n+1
(p,-s.)! )
Jj 73 sj+3 +3)1 2 2(1-2)(n+2-3)
+ :E: IR ORTIN {d (sj 3)!') 7o .

j=2
In (6.11) we have used the assumption about the mesh, namely that

R(j) < K independently of n.

Step 5. So far we have not chosen in (6.11) the values of Sj'

By the same procedure as in [6] we can select sj in dependence

on p. so that

J
(6.12) umpi < ce’?
H* (0)
and because N < K(un)zn < Kln3 we get
1/3
- YN
(6.13) Q- 1 < Cle'
H (Q)

Step 6. Let now u be the exact solution of problem (3.1) such

that g[O] is replaced by gg. Then ﬁs = u-u satisfies

L T I P SIS ST ST RN S PR IR AL S LT SRR S I ) .-
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Lﬁs=0
a
Us gl on (D)
anc
S _.[o] (0)
us = gg-9 on T .
As in Step 4 we construct function v = HI(Q) such that
v=g —g[o] on F(o)
S
and
VAL < Ciiu~-¢p: .
1t (0) 1l (0)

Because we have assumed that the bilinear form associated to prob-
lem (3.1) satisfies the inf-sup (B-B) condition we get immedi-

ately

(6.14) a_ < Cllu-pl .
S"4l(0) )

Step 7. Finite element solution uS can now be understood as the

finite element solution of the problem with exact solution

~

u=u + ug. Now we have using (6.13) and (6.14)

1/3
a_ b < ce”N

and hence also

1/3

Therefore

c
c
tA
o
)

which was to prove.
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So far we have assumed that the mesh consists only of the
quadrilaterals. If the mesh has also triangular elements we pro-

ceed very analogously.

In Step 1 we use the mapping Mi 3 which is extended on S
and consider Ui j as the image of u on Gi i it is easy to
show that the extension function V(¥,n) having the same proper-

ties as mentioned in (6.7) exists for T. See e.g. [6].
All other steps are now the same only rendering that the

"correction” fucntions now could be of degree 2pj because 51 ]

is polynomial of degree 2p on the diagonal of S.
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7. Numerical Examples

Let us consider the problem
(7.1) A = 0 on Q

when ¢ is an L-shaped domain as shown in Figure 7.1 and the
Dirichlet conditions are prescribed on one part of 40 and the

Neumann conditions are the other part of d&9Q.

Y
iy F3
i
r I2
K Cl
[a 0 Iy X
i
Ts
|
Is
Y, 1 + 1 —

Figure 7.1. The domain Q.

We will consider two problems with various combinations of the

Dirichlet and Neumann boundary conditions with the exact solution.

Case A:
(7.1) u=r"3sin 20
Case B:
(7.2) u = r2/3cos %0
n :
The sequence of meshes On (7 = 0.15) 1is characterized by the
63
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parameter n = 1,...,6 and is shown in Figure 7.2.

Let us first consider the case where the Dirichlet boundary

condition is prescribed on the entire d8Q. Then in the case A we
have g; = g|r analytic on Fi’ i=1,2,...,5 while on
i
Fe : g6 = rl/a. Now we can use Lemma 4.17 and conclude that for
i=1,...,5, gi S Bg(ri), 0 <3 <1 arbitrary and for 1 = 6 we
n=| n=2
~ M
— o)
O
L - e o
- I
o
L L F;/O.I5
! | | |
- ¥ 1 F —
. 0.15 g OI5 y

0225~ pyf 0225

e >
n
n
- gg
o

i

A

y 4
P

—

—|© 0|8 DETAIL
o oy
A | M | 5
015 J015%0225
y 0.18 '
n=3
Figure 7.2. The meshes Qn, n=1,2,3, 0g=1.5

(&)

64

¥ X

e
()

FTALIL,

ol o8 s PLYLP

- *

v v .
ot

v r s
wr

Y
Lo e
PR Ay oy

.

@
P Ny




. ClaaAa wmwwmmw.vn&vmmwn&v.v:mﬂmv:v_v:vrrﬁ'.vm
P

N

)y
I

) 1 1 1

™ obviously have + = 3 and hence g, = By (') with 3 > 5. Using
]

" Theorem 4.3 we see that g = 32/2(80) with R > % and hence by

U 2 2 >y p Y
v = 5 —_— ! 51 3 .
@. Theorem 3.2 we have u B@(Q) with Rl > max(3,?1) and 55 > i
E for i =2,...,6, Ei depend on the problem. In our case it can
L™ be shown that ?1 = % and 51 =0, i=2,...,5. Hence 1 > ¢ >
S % arbitrary and 0 < Ri < 1 arbitrary for i = 2,...,6. This of
-

ﬁ course is obvious alsc from the fact that the solution is given by
) 1

i (7.1). Analogously in the case B we have 1 > 3, > =, and O <
b 3, <1 for 1=2,...,6.
9 1

: Denote E(u) = EB(u,u), EFE(n,p) = E(US) where S being
;' characterized by the mesh Qg and degree p and

-
‘A 3u 3v 3u v

N —— — ——— t—— ——

X B(u,v) = J [ax Ix% + 3y ay]dxdy.

"~ 0

e
i 2 | : )

= y- lells = | = llell . /iul

N Let e u-ug, elg E(e) and HeJER ,eME/Au‘E be the error,
g, the error norm and the relative error norm, respectively.
. We have in the case A: E(u) = 0.423569 and in the case B:
S E(u) = 0.918113.

w

“~

:: Figure 7.3a,b depict the relative error of the finite element
AN
5 solution in Qg in the double logarithmic scale. We mention that
== for n =1 and p =1 we have N = 0 because the finite element
}ﬁ solution is determined directly by its values at the boundary. We
.

; see that in the case A the p-version does not practically converge
5* while in the case B it does. Nevertheless the h-p version
{f (n = p) converges in both cases as the theorems 5.1 predicts. We
L)

'§ also show in the figure the degree of the elements. Figure 7.4a.b
b
o5
N

$
)
e
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show the same results but in the scale t’gﬂe‘»LEW le/a. We see

this scale

3
(e-—u/ﬁ) .

that the error of the h-p version is nearly linear in

which shows that the error decreases exponentially as O

The divergence of the p-version in the case A is related to

the way how g is replaced by 9g (see Lemma 6.2). We have shown

provided that

in {9] that the p-version converges with optimal rate

g € HI(F). If g ¢« HI(F) to get optimal rate of convergence we
have to replace ¢ by Ig in another way (so called Hl/2 pro-
Jection, see {10]). Then the convergence is also guaranteed.

H1/2 pro-

Figure 7.5 compares the performance of the method with

jection in the case A for n = 1. We show in Figure 7.5 the slope

of o(N"1/3) which is also the optimal rate. For the detailed

comparison of the performance of various projections, specifically

the Hl and H1/2—projection we refer to (7).

S

s 100 3

W 80F X N; 5 6
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s 3 It ]
=& aof ]
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- |
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= 172
E & 20 ----H"ZproJECTION |
3¢ "
@©

W

¥ IO' L1 133 L4l

F' 0]

{00
— N —~—
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Figure 7.5. Relative error of the p-version for the Hl—projection

and Hl/z-projection, Case A.
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In Figures 7.6a,b we show the performance of the h-p
version (p = n) for various combinations of the Dirichlet and
Neumann conditions {(using Hl-projection technique for Dirichlet
conditions). We see that there is no significant difference
between the performance of the h-p version for various combina-
tions of the boundary conditions. (We mention that in the case A
the Dirichlet condition on T is homogeneous and so it does not

1

contribute to the error.) In contrast the p-version with the

Hl(r) projection performs independently of the boundary condi-

tions only if g; - Hl(ri) while for the Dirichlet condition with
g, < Ha(Fi), a < 1 the performance deteriorates. This can be seen
by comparison of Figures 7.3a,b resp. 7.7a,b where the error is
given for the Dirichlet resp. Neumann boundary condition. We see
that in the case B the performance of the p-version (with H1
projection) for Dirichlet boundary conditions is the same as for

the Neumann condition while in the case A we see significant
differences.

If the Neumann condition or Neumann condition and homogeneous
Dirichlet conditions is prescribed, then the strain energy of the
finite element solution is increasing with p, i.e., EFE(n,pl)
EFE(n,pz) for P, * Py Because increasing n, the shape of
elements is changed, we do not have necessarily EFE(nl,p)
EFE(nz,p) for n, > n although practically this usually occurs.

1

If the continuous Dirichlet condition is prescribed on the entire
boundary and g; are polynomials of degree p ° Py then
EFE(n,pz) < E(n,pl) for P, Py Py, i.e.. the strain energy is

decreasing with p. 1If the Dirichlet condition is not a polynomial
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or on a part of d0 the nonhomogeneous Neumann condition is pre-

scribed while the Dirichlet condition is given on the other part,

the energy is not monotonic.
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Figure 7.8 shows the behavior of EFE for the case A, where

n=11,2 and p =1,...,8 when the monotonicity occurs only in

the case d as expected.

075
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Figure 7.8. The monotonicity of the energy of the finite

element solutions.

In the case when the approximation of the nonhomogeneous

Dirichlet boundary conditions do not contribute to the error we

have
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.2 _
e‘E = IE(uS) E(u)l.

In the case when the Dirichlet conditions are prescribed on the
entire 48Q we have
- E(u)) + ®|

where the correction term ® is due to the fact that the finite

element solution does not satisfy exactly the boundary condition

(i.e., gssg). Nevertheless % is usually negligible for p 2
and IE(uS) - E:(u)ll/2 = e, 1s very close to ‘e‘E. The term ®
E
can be easily computed if the small solution is known. In fact
2 _ igenq. 221 - -
uerE = ‘u-ug = 2B(uS u,ug u)
=1 B(u_,u_) + B(u,u) - 2B{ )1
2 S°7S ! s']

where

® = -
B(u,u us).

Because Au

]
o

we have by integrating by parts

R = [ g% (u—us) ds

a0
and u-ug is known on dQ as well as g%. Table 7.1la,b shows
the correcticn term %® fcr the mesh 92, n = 6 and the relative
value of %, e . depending on p for the case A and B.

E
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Table 7.1la. The correction term ®
CASE A
P R et ? R/ieis 9
E E

1| -1.237(-2) 5.626(-2) 21.99(0)
21 ~1.755(-4) 4.945(-3) 3.855 (0)
3| —-4.229(-6) 3.419(-3) 1.21(-1)
4| -1.203(-7) 6.091(-4) 1.97(-2)
5 1.053(-11) 5.027(-4) 2.09(-6)
6 3.927(-9) 4.701(-4) 8.35(-4)
7 4.064(-9) 4.535(-4) 8.96(-4)
8 4.059(-9) 4.433(-4) 9.18(-4)

Table 7.3b.

The correction term <®

CASE B
p R re1? ®/llel? 7
E E

1| -2.698(-2) 5.082(-2) | 19.67(0)
2| -1.542(-4) 1.695(-3) | 9.09 (0)
3| -2.614(-6) 1.801(-4) | 1.44 (0)
4| -6.126(-8) 2.296(-5) | 2.67(-1)
5| -1.629(-9) 3.336(-6) | 5.04(-2)
6| -4.233(-11) | 5.512(-7) | 7.68(-3)
7| 7.636(-12) | 1.202(-7) | 6.35(-3)
8] 9.268(-12) | 4.619(-8) | 2.01(-3)

enced by round off errors.

19

Let us mention that for higher p

the correction is influ-
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The Laboratory for Numerical analysis is an integral part »f the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physinal
Science and Technology. It has the following goals:

o] To condust research in the mathematical theory and ccmputational
implementation of numerical analysis and related tcpies, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o] To help bridge gaps between computational directions in engineering,
physiecs, ete., and those in the mathematical community.

o) To provide a limited consulting service in all areas of numerical
mathematiecs to the University as a whele, and alsn to government
agencies and industries in the 3tate of Maryland and the Washington
Metropolitan area.

o] To assist with the education of numerical analysts, especially at “he
postdectoral level, in conjunetion with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematies and Computer
Science Departments, This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o) To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, ete.)

Further information may be obtained from Professor 1. Babu%ka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Secience and
Technology, University of Maryland, College Park, Maryland 20742,
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\; Institute for Physical Seience and T=~hnolegy »f the University of Maryland
- under the general administration of the Dirertar, Institute for Physinal
. Science and Technology. It has the following goals:
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}N o) To condu~t research in the mathematical theory and <omputational

't implementation of numeriecal analysis and related topics, with emphasis
%. on the numerical treatment of linear and nconlinear differential equa-
. tions and problems in linear and nonlinear algebra.

::f ' 0 To help bridge gaps between computational directions in engineering,
o physies, ete., and those in the mathematical ~ommunity.

;; 0 To provide a limited consulting service in a3ll areas of numerical
- mathematies to the University as a whole, and alsn to government
, agencies and industries in the State of Maryland and the Washington
W Metropolitan area,

f 0 To assist with the education of numerical analysts, especially at the
W postdoctoral level, in conjunction with the Interdisciplinary Applied
fd Mathematics Program and the programs of the Mathematics and Computer

] Science Departments. This inecludes active collaboration with govern-
,:. ment agencies such as the National Bureau of Standards.
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L& o} To be an international center of study and research for foreign
:: students in numerical mathematics who are supported by foreign govern-
ok ments or exchange agencies (Fulbright, etec.)

} Further information may be obtained from Professor I. Babugka, Chairman,
v Laboratory for Numerical Analysis, Institute for Physical Science and
o Technology, University of Maryland, College Park, Maryland 20742.
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